516 research outputs found

    Near-infrared counterparts of three transient very faint neutron star X-ray binaries

    Full text link
    We present near-infrared (NIR) imaging observations of three transient neutron star X-ray binaries, SAX J1753.5-2349, SAX J1806.5-2215 and AX J1754.2-2754. All three sources are members of the class of `very faint' X-ray transients which exhibit X-ray luminosities LX≲1036L_X\lesssim10^{36} erg s−1^{-1}. The nature of this class of sources is still poorly understood. We detect NIR counterparts for all three systems and perform multi-band photometry for both SAX J1753.5-2349 and SAX J1806.5-2215, including narrow-band Brγ_{\gamma} photometry for SAX J1806.5-2215. We find that SAX J1753.5-2349 is significantly redder than the field population, indicating that there may be absorption intrinsic to the system, or perhaps a jet is contributing to the infrared emission. SAX J1806.5-2215 appears to exhibit absorption in Brγ_{\gamma}, providing evidence for hydrogen in the system. Our observations of AX J1754.2--2754 represent the first detection of a NIR counterpart for this system. We find that none of the measured magnitudes are consistent with the expected quiescent magnitudes of these systems. Assuming that the infrared radiation is dominated by either the disc or the companion star, the observed magnitudes argue against an ultracompact nature for all three systems.Comment: 10 pages, 10 figures, accepted for publication in MNRA

    Limits on thermal variations in a dozen quiescent neutron stars over a decade

    Get PDF
    In quiescent low-mass X-ray binaries (qLMXBs) containing neutron stars, the origin of the thermal X-ray component may be either release of heat from the core of the neutron star, or continuing low-level accretion. In general, heat from the core should be stable on timescales <104<10^4 years, while continuing accretion may produce variations on a range of timescales. While some quiescent neutron stars (e.g. Cen X-4, Aql X-1) have shown variations in their thermal components on a range of timescales, several others, particularly those in globular clusters with no detectable nonthermal hard X-rays (fit with a powerlaw), have shown no measurable variations. Here, we constrain the spectral variations of 12 low mass X-ray binaries in 3 globular clusters over ∼10\sim10 years. We find no evidence of variations in 10 cases, with limits on temperature variations below 11% for the 7 qLMXBs without powerlaw components, and limits on variations below 20% for 3 other qLMXBs that do show non-thermal emission. However, in 2 qLMXBs showing powerlaw components in their spectra (NGC 6440 CX 1 & Terzan 5 CX 12) we find marginal evidence for a 10% decline in temperature, suggesting the presence of continuing low-level accretion. This work adds to the evidence that the thermal X-ray component in quiescent neutron stars without powerlaw components can be explained by heat deposited in the core during outbursts. Finally, we also investigate the correlation between hydrogen column density (NH_H) and optical extinction (AV_V) using our sample and current models of interstellar X-ray absorption, finding NH(cm−2)=(2.81±0.13)×1021AVN_H ({\rm cm}^{-2}) = (2.81\pm0.13)\times10^{21} A_V.Comment: 16 pages, 5 figures, MNRAS, in pres

    On the coexistence of stellar-mass and intermediate-mass black holes in globular clusters

    Full text link
    In this paper, we address the question: What is the probability of stellar-mass black hole (BH) binaries co-existing in a globular cluster with an intermediate-mass black hole (IMBH)? Our results suggest that the detection of one or more BH binaries can strongly constrain the presence of an IMBH in most Galactic globular clusters. More specifically, the detection of one or more BH binaries could strongly indicate against the presence of an IMBH more massive than ≳103\gtrsim 10^3 M⊙_{\rm \odot} in roughly 80\% of the clusters in our sample. To illustrate this, we use a combination of N-body simulations and analytic methods to weigh the rate of formation of BH binaries against their ejection and/or disruption rate via strong gravitational interactions with the central (most) massive BH. The eventual fate of a sub-population of stellar-mass BHs (with or without binary companions) is for all BHs to be ejected from the cluster by the central IMBH, leaving only the most massive stellar-mass BH behind to form a close binary with the IMBH. During each phase of evolution, we discuss the rate of inspiral of the central BH-BH pair as a function of both the properties of the binary and its host cluster.Comment: 16 pages, 8 figures, 1 table, accepted for publication in MNRA

    Study of HST counterparts to Chandra X-ray sources in the Globular Cluster M71

    Full text link
    We report on archival Hubble Space Telescope (HST) observations of the globular cluster M71 (NGC 6838). These observations, covering the core of the globular cluster, were performed by the Advanced Camera for Surveys (ACS) and the Wide Field Planetary Camera 2 (WFPC2). Inside the half-mass radius (r_h = 1.65') of M71, we find 33 candidate optical counterparts to 25 out of 29 Chandra X-ray sources while outside the half-mass radius, 6 possible optical counterparts to 4 X-ray sources are found. Based on the X-ray and optical properties of the identifications, we find 1 certain and 7 candidate cataclysmic variables (CVs). We also classify 2 and 12 X-ray sources as certain and potential chromospherically active binaries (ABs), respectively. The only star in the error circle of the known millisecond pulsar (MSP) is inconsistent with being the optical counterpart. The number of X-ray faint sources with L_x>4x10^{30} ergs/s (0.5-6.0 keV) found in M71 is higher than extrapolations from other clusters on the basis of either collision frequency or mass. Since the core density of M71 is relatively low, we suggest that those CVs and ABs are primordial in origin.Comment: 12 pages, 6 figures. Accepted for publication in Astronomy and Astrophysic

    Radio Continuum Emission from the Magnetar SGR J1745-2900: Interaction with Gas Orbiting Sgr A*

    Full text link
    We present radio continuum light curves of the magnetar SGR J1745−-2900 and Sgr A* obtained with multi-frequency, multi-epoch Very Large Array observations between 2012 and 2014. During this period, a powerful X-ray outburst from SGR J1745−-2900 occurred on 2013-04-24. Enhanced radio emission is delayed with respect to the X-ray peak by about seven months. In addition, the flux density of the emission from the magnetar fluctuates by a factor of 2 to 4 at frequencies between 21 and 41 GHz and its spectral index varies erratically. Here we argue that the excess fluctuating emission from the magnetar arises from the interaction of a shock generated from the X-ray outburst with the orbiting ionized gas at the Galactic center. In this picture, variable synchrotron emission is produced by ram pressure variations due to inhomogeneities in the dense ionized medium of the Sgr A West bar. The pulsar with its high transverse velocity is moving through a highly blue-shifted ionized medium. This implies that the magnetar is at a projected distance of ∼0.1\sim0.1 pc from Sgr A* and that the orbiting ionized gas is partially or largely responsible for a large rotation measure detected toward the magnetar. Despite the variability of Sgr A* expected to be induced by the passage of the G2 cloud, monitoring data shows a constant flux density and spectral index during this periodComment: 12 pages, 3 figures, ApJL (in press
    • …
    corecore